NOAA-EPAs U.S. National Air Quality Forecast Capability

May 10, 2006

Paula M. Davidson¹, Nelson Seaman¹, Jeff McQueen¹, Rohit Mathur¹,², Chet Wayland²

¹National Oceanic and Atmospheric Administration (NOAA)
²US Environmental Protection Agency (EPA)
National Air Quality Forecast Capability

- Background and Current Capability
- Transitioning capabilities to operations
- Progress toward expanded capabilities
US National Air Quality Forecast Capability

Background: Timing and Partners

Constituent Interest

- Health and economic impacts of poor AQ enormous
- AQ managers, public health officials, private weather sector partners urge NOAA to provide AQ forecasts

Science of Quantitative AQ Predictions Maturing

- Ozone forecast models in use -- others in development. NOAA-EPA deployed initial operational capability in September, 2004
- PM forecast models in work. Current capabilities qualitative; R&D ongoing
- Other nations with AQ forecast capability beginning in late 1990s

Congressional Interest

- H.R. 4 Energy Policy Act of 2002 (Senate Amendment); Directed appropriations to NOAA beginning in FY 02

NOAA-EPA Agreements

- DOC Deputy Secretary and EPA Administrator signed MOU/MOA for AQ forecasting May 6, 2003
US National AQ Prediction:
EPA + NOAA + State/Local Links

EPA Data Management Center

NOAA National Center for Environmental Prediction

Commercial Weather Providers

Predicted Pollutant Concentration Fields

Weather Obs

Data “pull” — — —> Data “push” — — —>

AQ Data from S/L Agencies

EPA Emissions Inventory

City-specific AQI forecasts

State/Local Air Agencies
National Air Quality Forecast Capability: Phased Growth

Early Implementations: 1-day forecast guidance for ozone
- Developed and deployed initially for Northeastern US, September 2004
- Expanded over Eastern US, Aug 2005

Near-Term
- Convert driving met model from Eta to WRF: Spring 2006
- Experimental test of ozone guidance over CONUS: Summer 2006
- Deploy Nationwide (AK & HI) by 2009

Longer range (within 10 years):
- Develop and implement capability to forecast particulate matter (PM)
 - Particulate size ≤ 2.5 microns
- Data assimilation for air quality
- Extend air quality forecast range to 48-72 hours
- Include broader range of significant pollutants
National Air Quality Forecast Capability

End-to-End Operational Capability

Model Components: Linked numerical prediction system

Operationally integrated on NCEP’s supercomputer
- NCEP mesoscale NWP: Eta-12
- NOAA/EPA community model for AQ: CMAQ

Observational Input:
- NWS weather observations
- EPA emissions inventory

Gridded forecast guidance products

Delivered to NWS Telecommunications Gateway and EPA for users to pull 2x daily

Verification basis

EPA ground-level ozone observations

Customer outreach/feedback

NCEP mesoscale NWP: Eta-12
State & Local AQ forecasters coordinated with EPA
Public and Private Sector AQ constituents
National Air Quality Forecast Capability

Major Model Components

- NWP Model
 - NAM/Eta-12
 - NOAA/NWS

- NWP Post-processors for AQ Modules

- AQ Module: Emissions Preprocessor
 - PREMAQ
 - NOAA/OAR and EPA/ORD

- AQ Module: Air Quality Reactive Transport
 - CMAQ
 - NOAA/OAR and EPA/ORD

- Weather Observations

- EPA’s National Emissions Inventory:
 - EPA/OAQPS

- IT/Comms
 - NOAA/NWS and EPA/OAQPS
Transition to Operations

Phased Testing

Research

Does the science work?

Developmental Testing

Does it work with operational systems?

Experimental Testing

Does it meet deployment readiness criteria?

Deploy into Operations

Key S & T Tests, Summer 2005

More advanced vertical mixing in CMAQ: ACM test

Convective mixing improved in CMAQ, Cloud/radiation impacts, Boundary conditions (ozone)

Eta-X improves NAM; Updated emissions data in CMAQ

Does the science work?

More advanced vertical mixing in CMAQ: ACM test

Convective mixing improved in CMAQ, Cloud/radiation impacts, Boundary conditions (ozone)

Eta-X improves NAM; Updated emissions data in CMAQ

NOAA Air Quality Forecasting Research Priorities

• Addressing key issues with forecast models (e.g., vertical mixing/ species distribution, sulfate bias aloft identified with ICARTT data)

• Improving boundary conditions for regional model

• Developing prototype PM forecast system for future operational capability

• Developing advanced approaches for biomass burning and windblown dust

• Developing chemical data assimilation approaches

• Ensemble forecast approaches
Experimental Test Domain: Summer 2006

Experimental: CONUS “5X”
Operational: EUS “3x”

CONUS “5x” Domain
EUS “3X”
IOC “1x”

268 grid cells
265 grid cells
259 grid cells

442 grid cells
Expansion of Initial Capability:

Summary Operational Readiness Criteria

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Metric</th>
<th>Dates</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective Evaluation: Accuracy</td>
<td>> 90 %</td>
<td>6/1/05 – 8/1/05</td>
<td>C</td>
</tr>
<tr>
<td>Subjective Feedback</td>
<td>Positive on balance</td>
<td>6/1/05 – 8/1/05</td>
<td>C</td>
</tr>
<tr>
<td>Production Readiness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-time delivery</td>
<td>> 95 %</td>
<td>6/1/05 – 8/1/05</td>
<td>C</td>
</tr>
<tr>
<td>Back-up</td>
<td>In place</td>
<td>6/1/05</td>
<td>C</td>
</tr>
<tr>
<td>Data retention</td>
<td>In place</td>
<td>6/1/05</td>
<td>C</td>
</tr>
<tr>
<td>Near-real time verification</td>
<td>In place</td>
<td>6/1/05</td>
<td>C</td>
</tr>
<tr>
<td>Final go/no go decision</td>
<td></td>
<td>8/17/05</td>
<td>C</td>
</tr>
</tbody>
</table>

Key
- **Complete**
- **On schedule**
- **At risk**
- **Remedial Action Required**
Ozone forecast guidance produced operationally:

- Expanded, August 2005 to Eastern US. 2X daily, 12km grid resolution, hourly predictions, through midnight next day.
 - Ground-level ozone concentrations (ppb) on NOAA/NWS servers: weather.gov/aq
 - As AQI: On EPA’s AIRNow website cfpub.epa.gov/airnow/index.cfm?action=static.noaa_today
 - Achieving performance targets for accuracy, reliability

Expanded products being tested in FY06:

- Ozone:
 CONUS domain, experimentally available, beginning June, 2006

- Particulate matter components:
 Smoke from large fires, experimentally available, weather.gov/aq-expr
 In development: Aerosols produced/transported; sources from anthropogenic emissions in climatologic inventories
Sample AQ forecast guidance

www.weather.gov/aq

Further information

www.nws.noaa.gov/ost/air_quality
Sample smoke forecast guidance

- Experimental Testing: beginning March, 2006
- Fire Locations and verification based on satellite observations
- Fire emissions estimates from USFS (BlueSky)
- HYSPLIT/NAM transport
Preview of Experimental Testing:
Ozone Predictions during Summer 2006
US National Air Quality Forecast Capability:
- Improving the Basis for AQ Alerts
- AQ Information for People at Risk

<table>
<thead>
<tr>
<th>Current AQ Alerts</th>
<th>NOAA’s Operational Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose:
Limit adverse effects from poor AQ, by providing:</td>
<td>Current (3/06)
State-of-the-science ozone forecast guidance</td>
</tr>
<tr>
<td>Products for Public
Daily AQ alerts; predicted interpretive AQ Index category</td>
<td>Hour-by-hour predictions of air pollutant concentrations in digital & graphical formats</td>
</tr>
<tr>
<td>Coverage
Approx 300 cities</td>
<td>Eastern United States</td>
</tr>
<tr>
<td>Pollutants Forecasted
AQ Index for ozone; some cities include particulate matter</td>
<td>Ground-level ozone</td>
</tr>
<tr>
<td>Forecast Period
Next-day; also through weekends</td>
<td>Forecast guidance through midnight next day</td>
</tr>
<tr>
<td>Spatial Resolution
Alerts are community-wide; little/no other spatial information</td>
<td>12 kilometer grid</td>
</tr>
<tr>
<td>Temporal Resolution</td>
<td>Daily</td>
</tr>
</tbody>
</table>